Biomedical Measurements in Embedded Applications
Electronic Measurements in Biomedical Engineering

Electronic Measurement Systems

Analog domain systems

Sensor (transducer)
- Physiological property of tissue \rightarrow electrical signals

Amplifier
- Sensor output \rightarrow input requirements of measuring system

Analog filter
- Amplifier output \rightarrow information of interest

Analog to digital converter (A/D)
- Signal \rightarrow binary coded sample sequence

Digital domain systems

Microcontroller
- Process automation: measurement \rightarrow display process

Digital signal processing (DSP)
- Digital domain filtering

Storage
- Interface \rightarrow information systems
Physiological Measurements

Mechanical

General physical measurement

Examples

Length, weight, pressure, temperature, motion

Electrical / chemical

Contact with tissue → electrical signal

Examples

EKG, EEG, blood glucose

Imaging

Stimulate tissue — pressure, sound, electromagnetic waves

Detect induced emissions

Examples

Ultrasound, X-ray, infrared, MRI
Electromagnetism

Force on charged particle

\[\mathbf{F} = q[\mathbf{E} + \mathbf{u} \times \mathbf{B}] \], \quad \text{charge } q, \text{ electric field } \mathbf{E}, \text{ magnetic field } \mathbf{B}, \text{ velocity } \mathbf{u}

Voltage (potential)

Measure of work performed against electric force \(\mathbf{F} \)

\[v_{AB} = \text{work required to push unit charge (} q = 1 \text{) from A to B} \]

Analogous to pressure in a water pipe

Ground

Reference point for measuring voltage

\[v_B = \text{voltage from ground to point } B \]

Current

Measure of motion of charged particles

\[i = \text{total charge crossing unit area per second} \]

Analogous to flow in a water pipe
Electric Circuit Concepts

Functions of time

Voltage $v(t)$
- Measured from ground: $v_1 = v_{1G}$, $v_2 = v_{2G}$
- Current $i(t)$

Voltage drop
- Pushing current \rightarrow perform work \rightarrow loss of voltage

Voltage source
- Power supply = source of energy for work = – drop

Kirchhoff laws (graph theory)
- Sum of currents entering any node = 0
 $$i_1 - i_2 - i_3 = 0$$
- Sum of voltage drops around any loop = 0
 $$-v_1 + v_{\text{drop}} + v_2 = 0$$
Electrical Circuit Elements

Conductor
Carries current with voltage drop $\rightarrow 0$

Resistor
Current $i(t)$ causes voltage drop $v(t) = R \times i(t)$
Resistance R

Capacitor
Current $i = C \times \frac{dv}{dt}$
Capacitance C

Inductor
Voltage drop $v = L \times \frac{di}{dt}$
Inductance L

Example — resistor elements R_A and R_B

\[
\begin{align*}
\phantom{\text{Example — resistor elements } R_A \text{ and } R_B} \\
i_1 &= i_2 = i \\
v_1 &= v_A + v_B = iR_A + iR_B \Rightarrow i = \frac{v_1}{R_A + R_B} \Rightarrow v_B = iR_B = \frac{R_B}{R_A + R_B} v_1 \\
\frac{v_B}{v_1} &= \frac{R_B}{R_A + R_B}
\end{align*}
\]
Frequency Domain Analysis

General circuit

Ordinary differential equations with respect to time

Example

Inductor L_A and resistor R_B

\[i_1 = i_2 = i \]

\[v_1 = v_A + v_B = L_A \frac{di}{dt} + iR_B \]

Fourier transform

\[v(t) = \int_{-\infty}^{\infty} V(\omega)e^{j\omega t} \, dt \iff V(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} v(t)e^{-j\omega t} \, d\omega \]

\[i(t) = \int_{-\infty}^{\infty} I(\omega)e^{j\omega t} \, dt \iff I(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} i(t)e^{-j\omega t} \, d\omega \]

\[v_1(t) = L_A \frac{di}{dt} + iR_B \rightarrow \quad V_1(\omega) = j\omega I(\omega)L_A + I(\omega)R_B \quad \Rightarrow \quad I(\omega) = \frac{V_1(\omega)}{R_B + j\omega L_A} \]

\[V_B(\omega) = \frac{R_B}{R_B + j\omega} V_1(\omega) \quad \Rightarrow \quad \left| \frac{V_B(\omega)}{V_1(\omega)} \right| = \frac{R_B}{\sqrt{R_B^2 + \omega^2 L_A^2}} \]
Frequency and Analog Filters

Low pass filter

Transfer function

\[
|H(\omega)| = \left| \frac{V_B(\omega)}{V_1(\omega)} \right| = \frac{R_B}{\sqrt{R_B^2 + \omega^2 L_A^2}} = \frac{1}{\sqrt{1 + \frac{\omega^2}{\omega_0^2}}} , \quad \omega_0 = \frac{R_B}{L_A}
\]

Higher frequency \(\omega \Rightarrow \) lower transfer

High pass filter

Resistor \(R_A \) and inductor \(L_B \)

Transfer function

\[
|H(\omega)| = \left| \frac{V_B(\omega)}{V_1(\omega)} \right| = \frac{\omega L_B}{\sqrt{R_A^2 + \omega^2 L_B^2}} = \frac{\omega}{\sqrt{\omega_0^2 + \omega^2}} , \quad \omega_0 = \frac{R_A}{L_B}
\]

Higher frequency \(\omega \Rightarrow \) higher transfer

Band pass filter

Resistor \(R \), inductor \(L \), and capacitor \(C \)

\[
\omega = \omega_0 \Rightarrow \text{highest transfer}
\]

\[
|H(\omega)| = \frac{\omega}{\sqrt{\omega^2 + \omega_1^2 \left(1 - \frac{\omega^2}{\omega_0^2} \right)^2}}
\]
Amplifiers

Operational amplifier (op amp)

Analog integrated circuit

Differential amplifier

\[v_{out} = A(v_+ - v_-) \]

\[i_{in} = \frac{v_+ - v_-}{R_{in}} \]

Simplified model

\[A, R_{in} \to \infty \implies v_+ - v_- = \frac{v_{out}}{A} \to 0, \quad i_{in} = \frac{v_+ - v_-}{R_{in}} \to 0 \]

Feedback amplifier

\[v_+ - v_- \to 0 \implies v_+ = 0 \]

\[i_{in} \to 0 \implies i_1 + i_2 = 0 \implies i_2 = -i_1 \]

\[i_1 = \frac{v_{in}}{R_1} \]

\[v_{out} = i_2 R_2 = -i_1 R_2 = -\frac{R_2}{R_1} v_{in} \implies \frac{v_{out}}{v_{in}} = -\frac{R_2}{R_1} \]

Set \(R_1 \) and \(R_2 \) to any convenient values for arbitrary amplification.
Analog to Digital Conversion — Sampling

Nyquist Theorem

Filter data signal to bandwidth \(f_{\text{max}} \)

Sample data signal at sample rate \(f_{\text{sample}} \geq 2 \times f_{\text{max}} \)

Reproduce data signal from samples without distortion

![Diagram showing analog to digital conversion]

- Data signal \(d(t) \)
- Sampling signal \(S(t) \)
- Sampled signal \(S(t)d(t) \)

Sequence of sample values
Convert Samples to Digital Form

Rounding-off

n-bit integer codes 2^n levels

Round-off samples to n-bit integer

Distorts data

Equivalent to added noise

Larger $n \Rightarrow$ more levels \Rightarrow higher resolution \Rightarrow less noise

Example

<table>
<thead>
<tr>
<th>Sampled values</th>
<th>158.276</th>
<th>158.879</th>
<th>159.724</th>
<th>159.821</th>
<th>159.312</th>
<th>158.791</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounded values</td>
<td>158</td>
<td>159</td>
<td>160</td>
<td>159</td>
<td>159</td>
<td>159</td>
</tr>
</tbody>
</table>
Sampling for Standard Telephony

Telephone line
Filter audio frequencies 300 Hz to 3300 Hz

Sample voice channel
\[f_{sample} = 8000 \text{ samples/second} > 2 \times 3300 \text{ Hz} \]

Round-off samples
Scale = \(2^8 = 256\) levels (0 to 255)
Each sample encoded as 8-bit byte

DS-0 voice channel
\[8000 \text{ samples/second} \times 8 \text{ bits/sample} = 64 \text{ kbps} \]
Sampling for Standard CD Audio

CD audio

Filter audio frequencies 20 Hz to 22,000 Hz

Sample voice channel

\[f_{\text{sample}} = 44,100 \text{ samples/second} > 2 \times 22,000 \text{ Hz} \]

Round-off samples

Scale = \(2^{16} = 65,536 \) levels (0 to 65,535)

Each sample encoded as 16-bit word

CD audio channel

\[44,100 \text{ samples/second} \times 16 \text{ bits/sample} = 705,600 \text{ bps} \]

MP3 encoding \(\rightarrow \) 5 times compression rate

\[705,600 \text{ bps} / 5 \approx 140 \text{ kbps} \approx 17,508 \text{ bytes/sec} \approx 1 \text{ MB/minute} \]
Biomedical Sensors

Classification by interaction type

Interaction → analog electrical signal (voltage / current)
 Physical / electrical / optical / chemical

Biosensor

Biological element — enzyme / antibody / receptor
Biochemical reaction → optical / electrical / physical signal

Packaging

Safe — biocompatibility
Reliable — long operational lifetime
Isolate sensor from body
 Polymer (plastic) covering / barrier layers
 Host body affects sensor function
 Sensor affects implantation site

Environmental factors

Interactions affected by temperature / pressure / noise ...
Electrochemical concepts

Ion

Atom / molecule with electrons ≠ protons

Cation

Electrons < protons ⇒ net + charge

Anion

Electrons > protons ⇒ net - charge

Metal

Material containing free electrons ⇒ electrical conductor

Electrolyte

Material containing free ions ⇒ electrical conductor

Typically ions in solution

Ionization current

![Diagram of ionization current]
Half-Cell Potential

Metal / electrolyte interface

Electrons flow to / from metal
Charge distribution near surface
Voltage between metal and electrolyte — half-cell potential

Battery (cell)

2 half-cells with different metals
Electrons flow from metal 1 ⇒ net +
Electrons flow into metal 2 ⇒ net −

Biopotential electrodes

Electrolyte = host tissue
2 half-cells with same metal
 Equal half-cell potentials (ideal model) ⇒ half-cell potentials cancel

Example

Two similar electrodes taped to chest near heart
Measure electrical potentials generated by heart
Differential amplifier → electrocardiogram (ECG = EKG) signals
Common Electrode Types

Electrocardiogram (ECG) electrodes
- Common electrode — flexible polymer + carbon / metal powder
- Pre-pasted electrolyte gel for application to skin

Electromyographic (EMG) electrodes
- Sense signals from muscles
- Surface EMG recording
 - 1 cm circular discs of silver / platinum
- Direct recording
 - Percutaneous (skin puncture) needle electrodes

Electroencephalographic (EEG) electrodes
- Sense signals from brain
- Cup electrodes
 - 5 – 10mm discs of platinum / tin with conducting gel attached to scalp
- Subdermal
 - Platinum / stainless-steel needle electrodes
 - 10mm long by 0.5mm wide
Magnetism

Magnetic field

Induced by accelerating charge

Example — electron in stable orbit around nucleus

Permanent ferromagnet

Metal (typically iron) with permanent magnetic field

Many atoms with electrons in stable parallel orbits

Compass aligns with earth's magnetic field

Earth's North Pole is a magnetic S

Mechanical forces

Opposite poles (N ↔ S) attract

Like poles (N ↔ N / S ↔ S) repel

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html
Electromagnetic Effects

Electromagnet

Electric current in wire coil (winding) \rightarrow magnetic field

Field configuration

Identical to permanent bar magnet

Current level + direction \rightarrow field strength + polarity

Induction

Varying magnetic field \rightarrow varying current in conductor

Mutual induction

Varying current in coil \rightarrow magnetic field \rightarrow current in second coil

Hall effect

Current in magnetic field

Charges spread to edges of conductor \rightarrow induced voltage V_{Hall}

$$F = q(u \times B)$$

- u along x
- B along z
- F along y

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>charge separation</td>
<td>induced voltage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Physical Measurements — 1

Linear Variable Differential Transformer (LVDT)

- Mutual induction effect

 \[L = \text{displacement of core from exact center} \]

 Secondary voltage \(V_S = k_{\text{geometry}} \times V_P \times L \)

- Precise measure of position

Electromagnetic flow transducer

- Magnetic field surrounds blood vessel
- Hall effect \(\rightarrow\) electrolytes separate to walls
- Transverse voltage measures blood flow
Elastic resistive transducer

Thin elastic tube containing conductor

Electrical resistance depends on length

Breathing → expanding chest → higher resistance → voltage change

Strain gauge

Similar to elastic resistive transducer

Stress (force) → strain (change in size) → higher resistance

Smaller range of expansion

Bonded

Single thin wire in flexible frame

Unbonded

Multiple thin wires in two-part frame
Variable Capacitance

Capacitor

Parallel metal plates

\[A = \text{area of plate} \]

\[D = \text{distance between plates} \]

Apply voltage → separate charges

Capacitance = charge stored per volt

\[q = C \times V \]

\[C = \text{constant} \times A \times D \]

Capacitor current

\[i = \frac{dq}{dt} = C \frac{dV}{dt} + V \frac{dC}{dt} \]

Measure small changes in displacement

Varying \(D \) with constant \(V \)

\[i = \text{constant} \times V \times A \times \frac{dD}{dt} \]
Pressure Transducers

Piezoresistance effect

Pressure on crystal \rightarrow contraction \rightarrow higher resistance

Used in portable blood pressure monitors

Piezoelectric effect

Voltage on crystal \rightarrow contraction

Pressure on crystal \rightarrow contraction \rightarrow voltage

Sensitive to short mechanical pulses

Used in sensitive cardiac monitors

Ultra-sound

Apply high frequency (1 to 10 MHz) voltage to crystal

Crystal vibrates at voltage frequency \rightarrow pressure wave \rightarrow ultra-sound

Apply ultra-sound to crystal

Pressure wave \rightarrow crystal vibrates \rightarrow voltage at ultra-sound frequency
Temperature Measurement

Contact thermometer

Measure body temperature in direct contact with skin

Thermistor

Metallic mixtures change resistance with temperature T

\[R = R_0 \exp \left[\beta \left(\frac{1}{T} - \frac{1}{T_0} \right) \right] \]

Noncontact thermometer

Measure temperature of ear canal near tympanic membrane

Infrared (IR) radiation guided to sensor

Thermopile sensor

Two metal plates in contact

Heated plates → voltage depending on temperature

Used in standard thermostat

Pyroelectric sensor

Heated crystal → voltage depending on temperature
Blood Pressure Set

High Level Design

cuff

air hose

controller
display

switches

air pump

controller
display

switches

air pump

controller
display

switches

air pump

motor control

LCD control

digital input

A/D

microcontroller

cuff

air hose

pump

pressure sensor

amplifier

filter

LCD display

switches

A/D

microcontroller
Blood Pressure

Pressure

Force per unit area

Measured as mmHg

External pressure balances weight of Hg in column

Pulse

Heart muscle contracts

Internal surface area decreases \Rightarrow pressure increases

Systolic pressure

Maximum BP at peak contraction

Normal range: 90 – 120 mmHg

Diastolic pressure

Minimum BP at minimum contraction

Normal range: 60 – 79 mmHg
Sphygmomanometer

Cuff

- Pump air into cuff
- Pressure measured in gauge
- Pressure on artery → restrict blood flow

Blood flow

- Unrestricted artery
 - Laminar (smooth) flow → silent
- Restricted (occluded) artery
 - Turbulent flow → BP oscillations → Korotkoff sounds

L. A. Geddes, *Handbook of Blood Pressure Measurement*
BP Measurement with Sphygmomanometer

Inflate cuff on upper arm

- Pump cuff to 160 – 200 mmHg
- Brachial artery occluded → no flow → silent

Gradually deflate cuff

- Listen to pulse with stethoscope

Systolic BP

- Onset of Korotkoff sounds
- Maximum contraction BP > cuff pressure

Korotkoff sounds

- Minimum contraction BP < cuff pressure < maximum contraction BP

Diastolic BP

- Silent flow ⇒ minimum contraction BP > cuff pressure
Oscillometric method

Filter + amplify oscillations

Cuff inflation

Cuff deflation

Pressure in cuff

High pass filter (at 1 Hz)

Amplify

SBP / DBP criteria determined by comparison with clinical data

Chua and Hin, Digital Blood Pressure Meter, Freescale Semiconductor